RAD51C - RAD51C as a human cancer susceptibility gene

Ref.-Nr. 2301

Despite the rising knowledge about genes involved in the formation and occurrence of cancers, only a limited amount of genes has been identified to be involved in hereditary cancers, e.g. BRCA1, BRCA2. Thus, there is still a need for new markers assessing the predisposition for cancers. The present invention provides a novel susceptibility gene for hereditary cancers. RAD51C, which encodes for a protein involved in DNA repair, has been found to be mutated in families with breast and ovarian cancer, but not in healthy control subjects. In addition, the patients were all selected from pedigrees negative for mutations of BRCA1 and BRCA2 to particularly identify genetic mutations causing a cancer predisposition independently of already known determinants. All analyzed mutations were identified as mono-allelic germline mutations. Besides gynecological cancers, mutations of RAD51C were also detected in patients suffering from head and neck squamous cell carcinomas (HNSSC). Thus, the presence of mutations in RAD51C is associated with an increased predisposition of developing cancer and positions RAD51C as a high-risk cancer susceptibility gene. Furthermore, an abnormal RAD51C gene status correlates with an increased probability for response to a DNA-damaging therapeutic agent and therefore represents an ideal companion diagnostic. RAD51C is one of the five paralogs of the RAD51 recombinase and an essential DNA repair protein that is required for error-free repair of DNA double strand breaks (1, 2). Other well established cancer susceptibility genes in the same homologous recombination (HR) pathway are BRCA1, BRCA2, BRIP1, and PALB2 (3). Bi-allelic germline loss-of-function mutations in RAD51C cause Fanconi anemia, a rare childhood disorder (4). Monoallelic germline mutations are associated with a significantly increased lifetime risk for familiar breast, ovarian and other cancers (4-6). In familiar as well as sporadic ovarian cancer patients, RAD51C is the third most frequently mutated gene - after BRCA1/2 (7). Importantly, loss-of-heterozygosity (LOH) of the wild-type allele occurs in at least 80% of tumors (5). It was reported that 3% of epithelial ovarian cancers had RAD51C promoter methylation, the second highest after BRCA1 methylation, and these tumors had a higher HRD score which is associated with improved survival (8). Cells deficient for RAD51C by any means are hypersensitive for DNA-crosslinking agents (e.g. cis/carboplatin, mitomycin C) (4), PARP inhibitors (e.g. olaparib) (4, 9) and TOPO I inhibitors (4), thus rendering RAD51C deficient tumor cells eligible for synthetic lethality approaches.


  • RAD51C as a novel susceptibility gene for hereditary: breast cancer, ovarian cancer, head and neck squamous cell carcinomas (HNSCC)
  • RAD51C as companion diagnostic for PARP or TOPO I Inhibitors

Kommerzielle Anwendung

Measures to understand the genomic make-up of an individual’s cancer cells are anticipated to play an increasingly important role for risk-adapted personalized treatment (e.g. companion diagnostics for PARP inhibitors) and also surveillance strategies, thereby ultimately improving the prognosis for the patient. Next generation sequencing-based approaches are increasingly accepted by professional societies and health care systems as appropriate diagnostic approaches to identify individuals with germline and/or somatic mutation(s) in cancer risk genes. RAD51C is an established cancer susceptibility gene. Myriad Genetics included RAD51C (in addition to BRCA1 and 2) in their homologous Recombination Deficiency (HRD) test which is currently in the validation phase.

Aktueller Stand

The proprietors offer the European patent EP 2 385 135 B1 as well as the patent applications EP 11 713 793.5, US 13/640,117 and CA 2,795,880 (derived from PCT/EP2011/055651, published as WO2011/124725 A1) for exclusive license. The disclosure and the claims are concentrated in three areas:

1. The diagnostic use of loss-of-function germ-line mutations in RAD51C as cancer susceptibility factor for inherited and sporadic breast, ovarian and head/neck cancers

2. The diagnostic use of RAD51C loss-of-function (either by mutations, splice defects, promoter methylations, microRNAs, protein abnormalities) in tumor cells of breast, ovarian and head/neck cancer patients

3. The use of RAD51C loss-of-function information in tumor cells for treatment stratification, e.g. for PARP or TOPO I inhibitors

Relevante Veröffentlichungen

1. Thacker, J. (2005) The RAD51 gene family, genetic instability and cancer. Cancer Lett. 219: 125-35.

2. Deans, A.J. & West, S.C. (2011) DNA interstrand crosslink repair and cancer. Nat. Rev. Cancer 11: 467-08.

3. D'Andrea, A.D. (2010) Susceptibility pathways in Fanconi's anemia and breast cancer. New Engl. J. Med. 362: 1909-19.

4. Vaz, F., et al. (2010) Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat. Genet. 42: 406-9.

5. Meindl, A., et al. (2010) Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat. Genet. 42: 410-4.

6. Scheckenbach, K., et al. (2014) RAD51C--A new human cancer susceptibility gene for sporadic squamous cell carcinoma of the head and neck (HNSCC). Oral Oncol. 50: 196-9.

7. Pennington, K.P. & Swisher, E.M. (2012) Hereditary ovarian cancer: Beyond the usual suspects. Gynecol. Oncol. 124: 347-53.

8. Abkevich, V., et al. (2012) Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer. Br. J. Cancer 107: 1776-82.

9. Min, A., et al. (2013) RAD51C-deficient cancer cells are highly sensitive to the PARP inhibitor olaparib. Mol. Cancer Ther. 12: 865-77.

Eine Erfindung der HHU Düsseldorf.

Dr. Constanze Vogel

+49 208 9410541